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IV. Concrusions

In this work, the surface integral equation has been used as a
boundary condition for the finite element solution of the multi-
port waveguide discontinuity problem. The major advantage
offered by the use of the surface integral equation approach is
that it allows for placing the mesh-terminating outer boundaries
of the finite element region as close to the junction discontinuity
as possible, thus minimizing the size of the finite element
matrix. This advantage is achieved despite the fact that the
evanescent modes have significant amplitudes in the region
close to the discontinuity, The accuracy of the surface integral
equation formulation and its simplicity make it an efficient and
versatile tool in the analysis of waveguide discontinuity prob-
lems.
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On the Use of Shanks’s Transform to Accelerate
the Summation of Slowly Converging Series

Surendra Singh and Ritu Singh

Abstract —1It is shown that the application of Shanks’ transform
results in accelerating the convergence of slowly converging series. The
transform is applied to a periodic Green’s function involving a single
summation. The convergence properties of this series are reported for
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Fig. 1. Relative error magnitude versus number of terms for the series

in (1) for x=a /2.

the “on-plane” case, in which the series converges extremely slowly.
Numerical results indicate that by employing Shanks’s transform the
computation time can be reduced by as much as a factor of 200.

I. INTRODUCTION

In the analysis of periodic structures, one usually encounters a_
Green’s function which converges very slowly. As repeated eval-
uations of the Green’s function series are needed in determining
the radiation or scattering from a periodic array using the
method of moments with subsectionally defined basis functions,
the slow convergence of the series would result in a considerable
amount of computation time. In order to reduce this time, we
look for ways to accelerate the convergence of the Green’s
function series. A method for improving the convergence of a
doubly infinite periodic Green’s function series has previously
been suggested [1]-[3]. It has been successfully applied by a
number of investigators to singly and doubly periodic Green’s
function series [4]-[8]. This paper reports the use of Shanks’s
transform in accelerating the convergence of a periodic Green’s
function involving a single infinite summation. Although the use
of Shanks’s transform in conjunction with Kummer’s and
Poisson’s transformations has been shown in [3] to improve the
convergence of a doubly periodic Green’s function, it is reported
here that a simple application of this transform alone to very
slowly converging series enhances their convergence tremen-
dously. Another advantage of using the transform is that no
analytical work need be done to the series. This is an attractive
feature, as the transform can be applied to a wide variety of
series.

II. IiLusTRATIVE EXAMPLE OF SHANKS’S TRANSFORM

If a sequence of partial sums of a series behaves as a
“mathematical transient” as defined by Shanks in [9], then it is
possible to extract the base of this “transient” by an application
of Shanks’s transform [9]. The transform is applied successively
to the partial sums of the series until a predefined convergence
criterion is satisfied. An algorithm to compute different orders
of Shanks’s transform is given in [10]. It is interesting to note
that although the partial sums show no indication of converging
to the sum of the series, the application of Shanks’s transform is
able to extract the sum from these partial sums. This is illus-
trated by taking the following series:

T sin(2n—-1)x
5o 3 sn@n-Dx.
47 (2n—-1)

n=1
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Fig. 2. Computation time versus 1/ € for the series in (1) for x = /2.

For x = 7 /2, the above series converges to 1. However, a direct
summation of the series converges extremely slowly. This slow
convergence is shown in Fig. 1, where the relative error is
plotted as a function of the number of terms taken in the series
for various values of the convergence factor, €, given in [3]. The
convergence factor is indicated alongside each point in the
figure. The result obtained from a direct summation of the
series is compared with that obtained from Shanks’s transform.
For €, =10"*, Shanks’s transform converges in only nine terms
to an accuracy of six decimal places. On the other hand, the
direct sum of the series takes about 5000 terms and converges to
only five-decimal-place accuracy. Fig. 2 shows the computation
time in seconds versus 1/¢.. The computation time increases
drastically as 1/€_ gets larger or as the convergence criterion is
made more stringent. For 1/¢, =10, the computation time for
the direct sum is almost a hundred times that taken by Shanks’s
transform. :

III. Periobic GREEN’S FUNCTION

In determining the radiation at an observation point (x,y)
from a one-dimensional infinite array of line sources spaced d
units apart in the x direction and located at (x', ") in each unit
cell, one encounters the following Green’s function [6]:

G= . :Z:o Tak,, e~k 2mm fdXx =Yg =ikymly =¥ (2)
where
. Vi = (k, +2mm /dY?, k2> (k,+2mm /d)?
- —j\/(k,, +2mm /dY— k2, k2<(k,+2mmw/d)’
3)
k,=ksinfcosd¢. €))

Here k is the wavenumber in free space, and (8,¢) are the
spherical coordinate angles of an incoming or outgoing plane
wave. The spectral-domain Green’s function in (2) and its spa-
tial domain counterpart, obtained by taking the inverse Fourier
transform of (2), are both slowly converging. The series in (2)
converges rapidly whenever y # y'. This is the so-called off-plane
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Fig. 3. Relative error magnitude versus number of terms for the peri-
odic Green’s function in (2) for A=1m, k, =0, d=05A, x'=y'=0,
x=0.1A,and y=0.
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Fig. 4. Computation time versus 1/¢, for the periodic Green’s func-
tionin (2 forA=1m, k,=0,d=05A, x'=y'=0, x =01, and y = 0.

case, in which the exponential factor aids in the fast conver-
gence of the series. We will look at the case in which the series
converges extremely slowly. This is the on-plane case, in which
y=y.Weset k,=0,d=05A, x'=y'=0, y=0,and A=1m,
and we will consider values of x close to x', specifically x = 0.1A
and x = 0.01\. In order to compute the relative error, the series
in (2) is first summed to machine precision. This sum is then
used in calculating the relative error.

Fig. 3 shows the relative error magnitude versus the number
of terms for various values of e, for x =0.1A. The dramatic
improvement in the rate of convergence of the series due to
Shanks’s transform is illustrated in this figure. The transform
converges in fewer than 50 terms for the range of e.. However,
the direct sum converges slowly, taking as many as 33000 terms
for e, = 5% 107, The computation time in seconds versus 1 /€.
for tflis case is shown in Fig. 4. The time taken by Shanks’s
transform varies from 0.04 to 0.12 s, while that for the direct
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Fig. 5. Relative error magnitude versus number of terms for the peri-
odic Green’s function in (2) for A=1m, k,=0, d=05A, x'=y'=0,
x=0.01A,and y=0.

sum varies from 0.05 to 24 s. This translates into a saving factor
ranging from 1.25 to 200 in using the transform.

Next, the observation point is brought closer to the source
point; that is, we take x =0.01A. For this case the series
converges much slower than in the x = 0.1A case. Fig. 5 shows
the relative error magnitude versus the number of terms. The
result obtained from Shanks’s transform converges within 160
terms; meanwhile the direct sum requires as many as 100000
terms for e, =1x10"% The computation time for this case
(although not shown graphically) varies from 0.11 to 17.38 s for
the direct sum and 0.04 to 0.61 s for the transform. In this case a
saving factor of 2.75 to 30 is obtained by employing the trans-
form. It should be pointed out that for series that converge at a
very slow rate, the convergence factor should be of the order of
1073 or lower. This is to ensure that the summing process does
not stop prematurely due to “local” convergence.
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IV. CoNcLusIONS

It is shown here, with an example involving two very slowly
converging series, that the application of Shanks’s transform
accelerates dramatically the convergence of such series. This is
indicated by the computation time taken by Shanks’s transform,
which in some cases is reduced by a factor of 200 compared with
that taken by the direct summation of the series. The transform
seems to work particularly well for very slowly converging series
where the partial sums of the series exhibit an oscillatory
behavior.
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